IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v19y1998i1p115-148.html
   My bibliography  Save this article

Alternative Models of Uncertain Commodity Prices for Use with Modern Asset Pricing Methods

Author

Listed:
  • Malcolm P. Baker
  • E. Scott Mayfield
  • John E. Parsons

Abstract

This paper provides an introduction to alternative models of uncertain commodity prices. A model of commodity price movements is the engine around which any valuation methodology for commodity production projects is built, whether discounted cash flow (DCF) models or the recently developed modern asset pricing (MAP) methods. The accuracy of the valuation is in part dependent on the quality of the engine employed. This paper provides an overview of several basic commodity price models and explains the essential differences among them. We also show how futures prices can be used to discriminate among the models and to estimate better key parameters of the model chosen.

Suggested Citation

  • Malcolm P. Baker & E. Scott Mayfield & John E. Parsons, 1998. "Alternative Models of Uncertain Commodity Prices for Use with Modern Asset Pricing Methods," The Energy Journal, , vol. 19(1), pages 115-148, January.
  • Handle: RePEc:sae:enejou:v:19:y:1998:i:1:p:115-148
    DOI: 10.5547/ISSN0195-6574-EJ-Vol19-No1-5
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/ISSN0195-6574-EJ-Vol19-No1-5
    Download Restriction: no

    File URL: https://libkey.io/10.5547/ISSN0195-6574-EJ-Vol19-No1-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prilly Oktoviany & Robert Knobloch & Ralf Korn, 2021. "A machine learning-based price state prediction model for agricultural commodities using external factors," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1063-1085, December.
    2. Unterschultz, James R., 2000. "New Instruments For Co-Ordination And Risk Sharing Within The Canadian Beef Industry," Project Report Series 24046, University of Alberta, Department of Resource Economics and Environmental Sociology.
    3. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    4. Chuong Luong & Nikolai Dokuchaev, 2016. "Modeling Dependency Of Volatility On Sampling Frequency Via Delay Equations," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 1-21, June.
    5. Alain Monfort & Olivier Féron, 2012. "Joint econometric modeling of spot electricity prices, forwards and options," Review of Derivatives Research, Springer, vol. 15(3), pages 217-256, October.
    6. Luis M. Abadie, 2009. "Valuation of Long-Term Investments in Energy Assets under Uncertainty," Energies, MDPI, vol. 2(3), pages 1-31, September.
    7. Guedes, José & Santos, Pedro, 2016. "Valuing an offshore oil exploration and production project through real options analysis," Energy Economics, Elsevier, vol. 60(C), pages 377-386.
    8. Delphine Lautier & Franck Raynaud, 2012. "Systemic Risk in Energy Derivative Markets: A Graph-Theory Analysis," The Energy Journal, , vol. 33(3), pages 215-240, July.
    9. Bühler, Wolfgang & Korn, Olaf, 1998. "Hedging langfristiger Lieferverpflichtungen mit kurzfristigen Futures: möglich oder unmöglich?," ZEW Discussion Papers 98-20, ZEW - Leibniz Centre for European Economic Research.
    10. Fiuza de Bragança, Gabriel Godofredo & Daglish, Toby, 2016. "Can market power in the electricity spot market translate into market power in the hedge market?," Energy Economics, Elsevier, vol. 58(C), pages 11-26.
    11. Jilong Chen & Christian Ewald & Ruolan Ouyang & Sjur Westgaard & Xiaoxia Xiao, 2022. "Pricing commodity futures and determining risk premia in a three factor model with stochastic volatility: the case of Brent crude oil," Annals of Operations Research, Springer, vol. 313(1), pages 29-46, June.
    12. Bai, Yizhou & Xue, Cheng, 2021. "An empirical study on the regulated Chinese agricultural commodity futures market based on skew Ornstein-Uhlenbeck model," Research in International Business and Finance, Elsevier, vol. 57(C).
    13. Boyarchenko Svetlana & Levendorskii Sergei Z, 2006. "General Option Exercise Rules, with Applications to Embedded Options and Monopolistic Expansion," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 6(1), pages 1-53, June.
    14. Bujar Huskaj & Marcus Nossman, 2013. "A Term Structure Model for VIX Futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(5), pages 421-442, May.
    15. E. Nasakkala & J. Keppo, 2008. "Hydropower with Financial Information," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(5-6), pages 503-529.
    16. Moreno, Manuel & Novales, Alfonso & Platania, Federico, 2019. "Long-term swings and seasonality in energy markets," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1011-1023.
    17. Nguyen, Duc Binh Benno & Prokopczuk, Marcel, 2019. "Jumps in commodity markets," Journal of Commodity Markets, Elsevier, vol. 13(C), pages 55-70.
    18. Ames, Matthew & Bagnarosa, Guillaume & Matsui, Tomoko & Peters, Gareth W. & Shevchenko, Pavel V., 2020. "Which risk factors drive oil futures price curves?," Energy Economics, Elsevier, vol. 87(C).
    19. Marcelo G. Figueroa, 2006. "Pricing Multiple Interruptible-Swing Contracts," Birkbeck Working Papers in Economics and Finance 0606, Birkbeck, Department of Economics, Mathematics & Statistics.
    20. Abdullah Almansour & Margaret Insley, 2016. "The Impact of Stochastic Extraction Cost on the Value of an Exhaustible Resource: An Application to the Alberta Oil Sands," The Energy Journal, , vol. 37(2), pages 61-88, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:19:y:1998:i:1:p:115-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.