IDEAS home Printed from https://ideas.repec.org/a/sae/emffin/v20y2021i3p290-307.html
   My bibliography  Save this article

Nonlinearity in Global Crude Oil Benchmarks: Disentangling the Effect of Time Aggregation

Author

Listed:
  • George Varghese
  • Vinodh Madhavan

Abstract

We model the first and second moments of global crude oil benchmarks, using iterative pre-whitened generalized autoregressive conditional heteroskedasticity (GARCH) models and, in doing so, validate the efficacy of such models in assimilating the neglected nonlinearities in the underlying data-generating processes. The benchmarks considered for this study are Brent, Dubai/Oman, and West Texas Intermediate (WTI) crude oil. While nonlinear serial dependence happens to be a stylized fact across different asset classes, it is our view that prior scholarly contributions have not adequately untangled the effect of data aggregation (in time) in the examination of nonlinear dependencies. In this context, the present study strives to untangle the critical role that time aggregation plays in the examination of nonlinearity in global crude oil benchmarks using data at daily, weekly as well as monthly time frequencies. Our findings are as follows: the optimum GARCH models perform well in capturing all of the neglected nonlinearity in monthly returns of the crude benchmarks. When it comes to daily and weekly returns, our study reveals traces of neglected nonlinearities that are not completely captured by GARCH models. Moreover, such residual traces of neglected nonlinear dependencies are relatively more pronounced at the granular levels and become more and more elusory as the data get aggregated in time. JEL Codes: C22, C53, C58, G1, Q47

Suggested Citation

  • George Varghese & Vinodh Madhavan, 2021. "Nonlinearity in Global Crude Oil Benchmarks: Disentangling the Effect of Time Aggregation," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 20(3), pages 290-307, December.
  • Handle: RePEc:sae:emffin:v:20:y:2021:i:3:p:290-307
    DOI: 10.1177/09726527211043013
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/09726527211043013
    Download Restriction: no

    File URL: https://libkey.io/10.1177/09726527211043013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    Crude oil; neglected nonlinearity; time aggregation; GARCH model;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G1 - Financial Economics - - General Financial Markets
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:emffin:v:20:y:2021:i:3:p:290-307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: http://www.ifmr.ac.in .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.