IDEAS home Printed from https://ideas.repec.org/a/sae/emeeco/v16y2024i3p431-451.html
   My bibliography  Save this article

Energy Costs and Greenhouse Gas Emissions of Giant Reed (Arundo donax L.) Production for Use as a Bioenergy Vector

Author

Listed:
  • Estela Santalla
  • Juan Ressia
  • Verónica Córdoba
  • Laura Lázaro

Abstract

This study estimates the energy costs and greenhouse gas emissions for the production and the processing for thermal use of Giant reed ( Arundo donax L.), a second-generation perennial energy crop. The agronomic study took place in Buenos Aires (Argentina) under humid to subhumid climatic conditions. Rhizomes and in vitro micropropagated plantlets were employed and cultivated under both fertilization and rainfed conditions during 2018–2022. The yield demonstrated a substantial increase from 3.8 t/ha to 23.1 t/ha from implantation to crop setting. Throughout this period, the energy input escalated from 23 to 70 GJ/ha, with the planting phase exhibiting the highest energy intensity. This surge can be attributed to the use of herbicides, accounting for 44.1%–61.3% of the energy consumed. Energy outputs were 17 (±0.19) MJ/kg as the low heating value obtained from the biomass elemental composition. The net energy yield for the 10-year lifecycle resulted in 2851.3 (±20.2) GJ/ha, and the output/input ratio varied from 41 (for pellets) to 126 (for chips). Carbon emissions ranged from 343.9 (for plantlets) to 371.9 (for rhizomes) kg CO 2 e/ha during the implantation stage, resulting in 208.3, 397.6, and 859.6 kg CO 2 e/ha for chips, bales, and pellets, respectively. This study reinforced the knowledge about the farming of this energy crop and displayed a promising scenario for the sustainable development of the Arundo donax L. based value chain. JEL Classification Q4, Q43, Q56

Suggested Citation

  • Estela Santalla & Juan Ressia & Verónica Córdoba & Laura Lázaro, 2024. "Energy Costs and Greenhouse Gas Emissions of Giant Reed (Arundo donax L.) Production for Use as a Bioenergy Vector," Global Journal of Emerging Market Economies, Emerging Markets Forum, vol. 16(3), pages 431-451, September.
  • Handle: RePEc:sae:emeeco:v:16:y:2024:i:3:p:431-451
    DOI: 10.1177/09749101231223796
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/09749101231223796
    Download Restriction: no

    File URL: https://libkey.io/10.1177/09749101231223796?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wiraditma Prananta & Ida Kubiszewski, 2021. "Assessment of Indonesia’s Future Renewable Energy Plan: A Meta-Analysis of Biofuel Energy Return on Investment (EROI)," Energies, MDPI, vol. 14(10), pages 1-15, May.
    2. Verónica Córdoba & Alejandra Manzur & Estela Santalla, 2022. "Drying kinetics and mathematical modelling of Arundo donax L. canes, a potential renewable fuel," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 68(3), pages 120-130.
    3. Foster, Phillips W. & Flemming, John & Wichelns, Dennis, 1980. "Energy Accounting: The Case Of Farm Machinery In Maryland," Southern Journal of Agricultural Economics, Southern Agricultural Economics Association, vol. 12(01), pages 1-4, July.
    4. Boehmel, Constanze & Lewandowski, Iris & Claupein, Wilhelm, 2008. "Comparing annual and perennial energy cropping systems with different management intensities," Agricultural Systems, Elsevier, vol. 96(1-3), pages 224-236, March.
    5. Foster, Phillips & Flemming, John & Wichelns, Dennis, 1980. "Energy Accounting: The Case of Farm Machinery in Maryland," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 12(1), pages 189-192, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bradford, Garnett L., 1981. "Comment: Energy Accounting: The Case Of Farm Machinery In Maryland," Southern Journal of Agricultural Economics, Southern Agricultural Economics Association, vol. 13(01), pages 1-3, July.
    2. Mikkola, Hannu J. & Ahokas, Jukka, 2010. "Indirect energy input of agricultural machinery in bioenergy production," Renewable Energy, Elsevier, vol. 35(1), pages 23-28.
    3. Stolarski, Mariusz J. & Krzyżaniak, Michał & Warmiński, Kazimierz & Tworkowski, Józef & Szczukowski, Stefan & Olba–Zięty, Ewelina & Gołaszewski, Janusz, 2017. "Energy efficiency of perennial herbaceous crops production depending on the type of digestate and mineral fertilizers," Energy, Elsevier, vol. 134(C), pages 50-60.
    4. Manzone, Marco & Calvo, Angela, 2016. "Energy and CO2 analysis of poplar and maize crops for biomass production in north Italy," Renewable Energy, Elsevier, vol. 86(C), pages 675-681.
    5. Giuseppe Pulighe & Guido Bonati & Stefano Fabiani & Tommaso Barsali & Flavio Lupia & Silvia Vanino & Pasquale Nino & Pasquale Arca & Pier Paolo Roggero, 2016. "Assessment of the Agronomic Feasibility of Bioenergy Crop Cultivation on Marginal and Polluted Land: A GIS-Based Suitability Study from the Sulcis Area, Italy," Energies, MDPI, vol. 9(11), pages 1-18, October.
    6. Valerii Havrysh & Antonina Kalinichenko & Edyta Szafranek & Vasyl Hruban, 2022. "Agricultural Land: Crop Production or Photovoltaic Power Plants," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    7. Dijkman, T.J. & Benders, R.M.J., 2010. "Comparison of renewable fuels based on their land use using energy densities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3148-3155, December.
    8. Stolarski, Mariusz J. & Krzyżaniak, Michał & Olba-Zięty, Ewelina, 2024. "Energy efficiency of Silphium perfoliatum and Helianthus salicifolius biomass production," Energy, Elsevier, vol. 307(C).
    9. Jankowski, Krzysztof Józef & Dubis, Bogdan & Budzyński, Wojciech Stefan & Bórawski, Piotr & Bułkowska, Katarzyna, 2016. "Energy efficiency of crops grown for biogas production in a large-scale farm in Poland," Energy, Elsevier, vol. 109(C), pages 277-286.
    10. Andreas Kiesel & Moritz Wagner & Iris Lewandowski, 2016. "Environmental Performance of Miscanthus, Switchgrass and Maize: Can C4 Perennials Increase the Sustainability of Biogas Production?," Sustainability, MDPI, vol. 9(1), pages 1-20, December.
    11. Sgroi, Filippo & Foderà, Mario & Trapani, Anna Maria Di & Tudisca, Salvatore & Testa, Riccardo, 2015. "Economic evaluation of biogas plant size utilizing giant reed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 403-409.
    12. Nassi o Di Nasso, N. & Bosco, S. & Di Bene, C. & Coli, A. & Mazzoncini, M. & Bonari, E., 2011. "Energy efficiency in long-term Mediterranean cropping systems with different management intensities," Energy, Elsevier, vol. 36(4), pages 1924-1930.
    13. Charisios Achillas & Dionysis Bochtis, 2021. "Supply Chain Management for Bioenergy and Bioresources: Bridging the Gap between Theory and Practice," Energies, MDPI, vol. 14(19), pages 1-4, September.
    14. Keshavarz-Afshar, Reza & Mohammed, Yesuf Assen & Chen, Chengci, 2015. "Energy balance and greenhouse gas emissions of dryland camelina as influenced by tillage and nitrogen," Energy, Elsevier, vol. 91(C), pages 1057-1063.
    15. Garofalo, Pasquale & Mastrorilli, Marcello & Ventrella, Domenico & Vonella, Alessandro Vittorio & Campi, Pasquale, 2020. "Modelling the suitability of energy crops through a fuzzy-based system approach: The case of sugar beet in the bioethanol supply chain," Energy, Elsevier, vol. 196(C).
    16. Affuso, Ermanno & Hite, Diane, 2013. "A model for sustainable land use in biofuel production: An application to the state of Alabama," Energy Economics, Elsevier, vol. 37(C), pages 29-39.
    17. Iuliana Gageanu & Dan Cujbescu & Catalin Persu & Paula Tudor & Petru Cardei & Mihai Matache & Valentin Vladut & Sorin Biris & Iulian Voicea & Nicoleta Ungureanu, 2021. "Influence of Input and Control Parameters on the Process of Pelleting Powdered Biomass," Energies, MDPI, vol. 14(14), pages 1-22, July.
    18. Garofalo, Pasquale & Campi, Pasquale & Vonella, Alessandro Vittorio & Mastrorilli, Marcello, 2018. "Application of multi-metric analysis for the evaluation of energy performance and energy use efficiency of sweet sorghum in the bioethanol supply-chain: A fuzzy-based expert system approach," Applied Energy, Elsevier, vol. 220(C), pages 313-324.
    19. Bojacá, C.R. & Schrevens, E., 2010. "Energy assessment of peri-urban horticulture and its uncertainty: Case study for Bogota, Colombia," Energy, Elsevier, vol. 35(5), pages 2109-2118.
    20. Wünsch, Karin & Gruber, Sabine & Claupein, Wilhelm, 2012. "Profitability analysis of cropping systems for biogas production on marginal sites in southwestern Germany," Renewable Energy, Elsevier, vol. 45(C), pages 213-220.

    More about this item

    Keywords

    Arundo donax L.; energy costs; energy production efficiency; GHG emissions; net energy balance;
    All these keywords.

    JEL classification:

    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:emeeco:v:16:y:2024:i:3:p:431-451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: http://www.emergingmarketsforum.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.