IDEAS home Printed from https://ideas.repec.org/a/rsr/journl/v66y2018i1p103-120.html
   My bibliography  Save this article

Bayesian Method with Clustering Algorithm for Credit Card Transaction Fraud Detection

Author

Listed:
  • Luis Jose S. Santos

    (De La Salle University, Philippines)

  • Shirlee R. Ocampo

    (De La Salle University, Philippines)

Abstract

Card transaction fraud is prevalent anywhere. Even with current preventive measures like the Europay, MasterCard and Visa (EMV) chips, possible weaknesses or loopholes can be exploited by fraudsters. This paper explores Naive Bayes Classifier and clustering algorithms to detect fraud in credit card transactions. Data on fraud labels and arrival times of transactions were simulated by the Markov Modulated Poisson Process. Amounts of transactions for genuine and fraud transactions were simulated based on two Gaussian distributions. Kinds of spenders and types of fraudsters serve as the bases for the parameters used in the simulation of the data. Using the simulated data, EM clustering algorithm with three different initializations and K-means were applied to cluster transaction amounts into high, medium and low. The Naive Bayes classifier algorithm was then applied to classify the transactions as good or fraud for the simulated data of 9 types of fraudsters across all clustering algorithms. Simulations and analyses were done using R software. Results include comparisons of true positive rates, false positive rates, and detection accuracies among the nine types of fraudsters across all clustering algorithms. For 3 clusters, (high, medium, low transaction amounts), the Naive Bayes Method with clustering algorithms resulted to an average of 76% true positive (TP) detection, 18% false positive (FP) detection, with an overall accuracy of 81%. The same averages of TP, FP, and overall accuracy were obtained using 2 clusters (high, and low). EM clustering algorithm generated TP, FP, and overall accuracy of 80%, 16%, and 83% respectively.

Suggested Citation

  • Luis Jose S. Santos & Shirlee R. Ocampo, 2018. "Bayesian Method with Clustering Algorithm for Credit Card Transaction Fraud Detection," Romanian Statistical Review, Romanian Statistical Review, vol. 66(1), pages 103-120, March.
  • Handle: RePEc:rsr:journl:v:66:y:2018:i:1:p:103-120
    as

    Download full text from publisher

    File URL: http://www.revistadestatistica.ro/wp-content/uploads/2018/03/RRS_1_2018_A08.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    credit card transaction; fraud detection; Naive Bayes Classifier; clustering algorithms; Markov Modulated Poisson Process data simulation;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C39 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsr:journl:v:66:y:2018:i:1:p:103-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adrian Visoiu (email available below). General contact details of provider: https://edirc.repec.org/data/stagvro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.