IDEAS home Printed from https://ideas.repec.org/a/rsk/journ8/7945496.html
   My bibliography  Save this article

Technical indicator selection and trading signal forecasting: varying input window length and forecast horizon for the Pakistan Stock Exchange

Author

Listed:
  • Beenish Bashir
  • Faheem Aslam

Abstract

The development of a predictive system that correctly forecasts trading signals is crucial for algorithmic trading and investment management. Technical analysis has been used by many researchers for financial market prediction. Numerous technical indicators (TIs) are computed by setting a time-frame parameter called the input window length. This paper therefore investigates how the input window length and forecast horizon together affect the predictive performance of the model. Market-specific TIs are extracted through a random forest technique. These TIs are used as inputs for an artificial neural network and a support vector machine to forecast the future direction of trading signals. The data set consists of 22 years of daily prices for the Pakistan Stock Exchange. This research finds the 15 most relevant features for the Pakistan Stock Exchange from a list of 34 TIs. The prediction system performs best when the forecast horizon is more than 15 days, which shows the dependency of the input variable parameter selection and the forecast horizon. This unique pattern is studied using multiple confusion metrics. The findings of this study may improve the prediction accuracy of a trading strategy based on technical analysis.

Suggested Citation

Handle: RePEc:rsk:journ8:7945496
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2022-04/Varying_input_window_length_and_forecast_horizon_OE.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ8:7945496. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-network-theory-in-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.