IDEAS home Printed from https://ideas.repec.org/a/rsk/journ8/7880541.html
   My bibliography  Save this article

Fractional differencing: (in)stability of spectral structure and risk measures of financial networks

Author

Listed:
  • Arnab Chakrabarti
  • Anindya S. Chakrabarti

Abstract

The computation of spectral structures and risk measures from networks of multivariate financial time series data has been at the forefront of the statistical finance literature for a long time. A standard mode of analysis is to consider log returns from the equity price data, which is akin to taking the first difference (d =;1) of the log of the price data. In this paper we study how correcting for the order of differencing leads to altered filtering and risk computation for inferred networks. We show that filtering methods with extreme information loss, such as the minimum spanning tree, as well as those with moderate information loss, such as triangulated maximally filtered graph, are very susceptible to d-corrections; the spectral structure of the correlation matrix is quite stable although the d-corrected market mode almost always dominates the uncorrected (d =;1) market mode, indicating underestimation in the standard analysis; and a PageRank-based risk measure constructed from Granger-causal networks shows an inverted-U-shaped evolution in the relationship between d-corrected and uncorrected return data for historical Nasdaq data for the period 1972–2018.

Suggested Citation

Handle: RePEc:rsk:journ8:7880541
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2021-09/Fractional_differencing_OE.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ8:7880541. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-network-theory-in-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.