IDEAS home Printed from https://ideas.repec.org/a/rsk/journ6/2163661.html
   My bibliography  Save this article

On a multi-timescale statistical feedback model for volatility fluctuations

Author

Listed:
  • Lisa Borland and Jean-Philippe Bouchaud

Abstract

ABSTRACT We study, both analytically and numerically, a multiscale quadratic autoregressive conditional heteroskedasticity (QARCH) model of volatility, which assumes that the volatility is governed by the observed past price changes over different timescales.With a power-law distribution of time horizons, we obtain a model that captures most stylized facts of financial time series (ie, Student t -like distribution of returns with a power-law tail, long memory of the volatility, slow convergence of the distribution of returns toward the Gaussian distribution, multifractality and anomalous volatility relaxation after shocks). In contrast with recent multifractal models that are strictly time-reversal invariant, the model also reproduces the time asymmetry of financial time series. Past large-scale volatility influences future small-scale volatility. In order to quantitatively reproduce all empirical observations, the parameters must be chosen such that the model is close to an instability, meaning that the feedback effect is important and substantially increases the volatility, and that the model is intrinsically difficult to calibrate because of the long-range nature of the correlations. By imposing consistency of the model predictions with a large set of different empirical observations, a reasonable range of the parameters' values can be determined. The model can easily be generalized to account for jumps, skewness and multiasset correlations. ;

Suggested Citation

Handle: RePEc:rsk:journ6:2163661
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/3882/jis_bouchaud_web.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ6:2163661. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-investment-strategies .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.