IDEAS home Printed from https://ideas.repec.org/a/rsk/journ5/7959313.html
   My bibliography  Save this article

Financial distress prediction with optimal decision trees based on the optimal sampling probability

Author

Listed:
  • Guotai Chi
  • Cun Li
  • Ying Zhou
  • Taotao Li

Abstract

Financial distress prediction plays an important role in the decision-making process of stock and bond investors, commercial banks and commercial credit adjusters. The effectiveness of financial distress prediction depends on the processing of sample data and the reasonable integration of multiple prediction results. The main contribution of this paper is a novel tree-based ensemble model for financial distress prediction. We obtain multiple balanced samples with different sampling probabilities. The optimal sampling probability is determined by the maximum geometric-mean values, and we construct optimal decision tree models based on the optimal balanced samples with the optimal sampling probability. The model validation is based on a sample of Chinese listed companies. We also validate the effectiveness of the model in different time windows. The empirical results show that the financial distress prediction performance of the proposed model exceeds that of the comparison models in different time windows. This model can contribute toward better credit risk analysis and management.

Suggested Citation

Handle: RePEc:rsk:journ5:7959313
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2024-05/jrmv_Zhou_web_final.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ5:7959313. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-risk-model-validation .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.