IDEAS home Printed from https://ideas.repec.org/a/rsk/journ5/7959308.html
   My bibliography  Save this article

Quantifying credit portfolio sensitivity to asset correlations with interpretable generative neural networks

Author

Listed:
  • Sergio Caprioli
  • Emanuele Cagliero
  • Riccardo Crupi

Abstract

We propose a novel approach for quantifying the sensitivity of credit portfolio value-at-risk to asset correlations with the use of synthetic financial correlation matrixes generated with deep learning models. In previous work, generative adversarial networks (GANs) were employed to demonstrate the generation of plausible correlation matrixes that capture the essential characteristics observed in empirical correlation matrixes estimated on asset returns. Instead of GANs, we employ variational autoencoders (VAEs) to achieve a more interpretable latent space representation and to obtain a generator of plausible correlation matrixes by sampling the VAE’s latent space. Through our analysis, we reveal that the VAE’s latent space can be a useful tool to capture the crucial factors impacting portfolio diversification, particularly in relation to the sensitivity of credit portfolios to changes in asset correlations. A VAE trained on the historical time series of correlation matrixes is used to generate synthetic correlation matrixes that satisfy a set of expected financial properties. Our analysis provides clear indications that the capacity for realistic data augmentation provided by VAEs, combined with the ability to obtain model interpretability, can prove useful for risk management, enhancing the resilience and accuracy of models when backtesting, as past data may exhibit biases and might not contain the essential high-stress events required for evaluating diverse risk scenarios.

Suggested Citation

Handle: RePEc:rsk:journ5:7959308
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2024-05/jrmv_Cagliero_web_final.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ5:7959308. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-risk-model-validation .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.