IDEAS home Printed from https://ideas.repec.org/a/rsk/journ5/7956068.html
   My bibliography  Save this article

Does the asymmetric exponential power distribution improve systemic risk measurement?

Author

Listed:
  • Shu Wu
  • Huiqiong Chen
  • Helong Li

Abstract

The measurement of systemic risk using parametric modeling suffers from fat-tailedness, asymmetric kurtosis and asymmetric tails. Prior research shows that the asymmetric exponential power distribution (AEPD) can potentially avoid overfitting and underfitting problems because it can be reduced to a Gaussian distribution and a generalized error distribution. This paper implements a parametric estimation for the systemic risk measure CoVaR (ie, conditional value-at-risk) of Huang and Uryasev and compares the goodness-of-fit and backtesting performance of the AEPD with other commonly used distributions (ie, the normal, Student t and skewed t distributions). Based on data from the Chinese banking sector from 2008 to 2019, the empirical results show that AEPD has the best goodness-of-fit. Moreover, it is the only distribution that provides a validated estimation for CoVaR.

Suggested Citation

Handle: RePEc:rsk:journ5:7956068
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2023-03/jrmv_wu_web_final_revised_take_2.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ5:7956068. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-risk-model-validation .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.