IDEAS home Printed from https://ideas.repec.org/a/rsk/journ5/7936571.html
   My bibliography  Save this article

Predicting financial distress of Chinese listed companies using a novel hybrid model framework with an imbalanced-data perspective

Author

Listed:
  • Tong Zhang
  • Zhichong Zhao

Abstract

When predicting financial distress, an imbalanced data set of company data may cause overfitting to the majority class and lead to bad performance of the classifiers. The problem of classification with imbalanced data is, therefore, a realistic and critical issue. In this paper a novel hybrid model framework is constructed to solve the problem of predicting the financial distress of Chinese listed companies using imbalanced data. This framework is developed on the basis of logistic regression and backpropagation neural networks combined with the safe-level synthetic minority oversampling technique. We validate the model on a data set of Chinese listed companies and compare the proposed model with seven baseline ones. The results confirm that the proposed model has superior performance. Further, we find 19 important features that significantly influence the financial distress of Chinese listed companies.

Suggested Citation

Handle: RePEc:rsk:journ5:7936571
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2022-04/Predicting_financial_distress_using_a_novel_hybrid_model_framework_final.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ5:7936571. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-risk-model-validation .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.