IDEAS home Printed from https://ideas.repec.org/a/rsk/journ5/7745296.html
   My bibliography  Save this article

A hybrid model for credit risk assessment: empirical validation by real-world credit data

Author

Listed:
  • Guotai Chi
  • Mohammad Shamsu Uddin
  • Tabassum Habib
  • Ying Zhou
  • Md Rashidul Islam
  • Md Asad Iqbal Chowdhury

Abstract

This paper examines which hybridization strategy is more suitable for credit risk assessment in the dynamic financial world. As such, we use extensive new data sets and develop different hybrid models by combining traditional statistical and modern artificial intelligence methods based on classification and clustering feature selection approaches. We find that a multilayer perceptron (MLP) combined with discriminant analysis or logistic regression (LR) can significantly improve classification accuracy compared with other single and hybrid classifiers. In particular, the findings of our empirical analysis, statistical significance test and expected cost of misclassification test confirm the superiority of the clustering-based LR + MLP hybrid classifier in improving prediction accuracy in maximum performance criteria. To check the efficiency and viability of the proposed model, we use three imbalanced data sets: Chinese farmer credit, Chinese small and medium-sized enterprise (SME) credit and German credit. We also use Australian credit data for further authentication and a robustness check. The first two data sets are private and high dimensional, whereas the second two are mostly used, publicly available and low dimensional. Thus, our findings are relevant for many areas of credit risk, such as SME, farmer and consumer credit risk modeling.

Suggested Citation

Handle: RePEc:rsk:journ5:7745296
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2021-02/A_hybrid_model_for_credit_risk_assessment_final.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ5:7745296. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-risk-model-validation .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.