IDEAS home Printed from https://ideas.repec.org/a/rsk/journ5/7669806.html
   My bibliography  Save this article

A k-means++-improved radial basis function neural network model for corporate financial crisis early warning: an empirical model validation for Chinese listed companies

Author

Listed:
  • Danyang Lv
  • Chong Wu
  • Linxiao Dong

Abstract

An early warning of corporate financial crises has long been the focus of investors and enterprises. Integrated early warning models for financial crises perform better than normal models, but most integrated models are very complex, elusive and computationally time-consuming. This paper aims to simplify the early warning model for financial crises by collecting and analyzing the financial data of Chinese special treatment (ST) companies, normally listed companies and cancel special treatment (CST) companies. To further predict the financial risks of companies, we put forward a finance-predicting model based on the k-means++ algorithm and an improved radial basis function neural network (RBF NN), and we compare their respective statistics. We indicate by experiment that combining k-means++ with the improved RBF NN helps to better predict financial risks for companies, which is effective in the risk control of financial management.

Suggested Citation

Handle: RePEc:rsk:journ5:7669806
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2020-10/A_k-means%2B%2B-improved_RBF_NN_model_for_financial_crisis_early_warning_final.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ5:7669806. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-risk-model-validation .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.