IDEAS home Printed from https://ideas.repec.org/a/rsk/journ5/5720521.html
   My bibliography  Save this article

Shrunk volatility value-at-risk: an application on US balanced portfolios

Author

Listed:
  • Stefano Colucci

Abstract

We test the naive model to forecast ex ante value-at-risk (VaR) using a shrinkage estimator between realized volatility estimated on past return time series and implied volatility quoted on the market. Implied volatility is often indicated as the operator’s expectation about future risk, while the historical volatility straightforwardly represents the realized risk prior to the estimation point, which by definition is backward looking. Therefore, the VaR prediction strategy uses information both on the expected future risk and on the past estimated risk. We examine Cesarone and Colucci’s 2016 model – Shrunk Volatility VaR (ShVolVaR) – and generalize it, assuming that returns are conditionally Student t distributed (the authors assume that returns are normally distributed, but normality is a particular case of Student t distribution with degrees of freedom that tend to infinity). The ShVolVaR results are compared with those of six benchmark industry VaR models. The performance of all VaR models is validated using both statistical accuracy and efficiency evaluation tests on thirty-nine equally spaced, balanced portfolios composed by US equity and bonds over an out-of-sample period that covers different crises. We evaluate model performances on four VaR confidence levels (95%, 99%, 99.5% and 99.9%). We also validate the models under loss function backtests; our results confirm the efficacy of implied volatility indexes as inputs for a VaR model, combined with realized volatilities. Further, we confirm Cesarone and Colucci’s 2016 conclusion in almost all balanced portfolios. In our empirical analysis, we find that a VaR model that correctly estimates VaR for all ε;and all the balanced portfolios considered does not exist. However, for each confidence level, the ShVolVaR model, with appropriate values for the parameters;α;;and v, can achieve the same results as the common VaR models that are widely used in the finance industry.

Suggested Citation

Handle: RePEc:rsk:journ5:5720521
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2018-06/Shrunk_volatility_VaR.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ5:5720521. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-risk-model-validation .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.