IDEAS home Printed from https://ideas.repec.org/a/rsk/journ5/5277031.html
   My bibliography  Save this article

A gradient-boosting decision-tree approach for firm failure prediction: an empirical model evaluation of Chinese listed companies

Author

Listed:
  • Jiaming Liu
  • Chong Wu

Abstract

Firm failure prediction is playing an increasingly important role in financial decision making. Ensemble methods have recently shown better classification performance than a single classifier, but the tree-based ensemble method for firm failure prediction has not been fully studied and remains to be further validated. Compared with other machine learning methods, it is more easily interpreted and requires little data preprocessing. In this paper, we employ a gradient-boosting decision-tree (GBDT) method to improve firm failure prediction and explain how to better analyze the relative importance of each financial variable. Because the GBDT deliberately adds new trees in order to correct errors made in previous steps, it has the potential to improve firm failure predictive performance. The influences of different parameters on model performance are analyzed in detail. Moreover, our proposed model is compared with four other popular ensemble methods. Our experimental results show that the GBDT outperforms these other methods in accuracy, precision, F -score and area under the curve. We therefore provide a full validation of GBDT, and believe that it is useful in controlling risk in financial risk management.

Suggested Citation

Handle: RePEc:rsk:journ5:5277031
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2017-06/A_gradient_boosting_decision_tree_approach_for_firm_failure_prediction.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ5:5277031. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-risk-model-validation .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.