IDEAS home Printed from https://ideas.repec.org/a/rsk/journ5/2161295.html
   My bibliography  Save this article

Area under the curve maximization method in credit scoring

Author

Listed:
  • Kakeru Miura, Satoshi Yamashita and Shinto Eguchi

Abstract

ABSTRACT The receiver operator characteristic curve and area under the curve (AUC) are widely used in credit risk scoring. In this field, it is common to employ the logit model with maximum likelihood estimators. The accuracy of the model is measured by AUC, but it turns out that the logit model with maximum likelihood (ML) estimators (which we refer to as the logit ML model) generally does not achieve optimality with respect to AUC. We propose a new method that uses AUC in a different manner. Our purpose is to estimate parameters and obtain a model for which AUC is maximized; we do this by using an approximated AUC as the objective function. We find that the model thus obtained is not only optimal with respect to AUC but also more robust than the original logit ML model when applied to data sets that include an outlier. Outliers are often present in financial indicator data, so our new method is very effective in terms of robustness.

Suggested Citation

Handle: RePEc:rsk:journ5:2161295
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/5031/jrm_v4n2a1.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ5:2161295. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-risk-model-validation .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.