IDEAS home Printed from https://ideas.repec.org/a/rsk/journ4/7955082.html
   My bibliography  Save this article

Nonparametric estimation of systemic risk via conditional value-at-risk

Author

Listed:
  • Ahmed Belhad
  • Davide Lauria
  • A. Alexandre Trindade

Abstract

Two forms of CoVaR have recently been introduced in the literature for measuring systemic risk, differing on whether or not the conditioning is on a set of measure zero. We focus on the former, and make allusions to the possibility of analogous results holding for the latter. After reviewing maximum likelihood estimation (MLE) and quantile regression methods, we introduce four new nonparametric estimators that are applicable given a bivariate random sample. Three of these employ results on concomitants of order statistics, while the fourth is novel in the way it uses saddlepoint approximations to invert the empirical (bivariate) moment generating function in order to recover the conditional distribution. All estimators are shown to be consistent under mild regularity conditions, and asymptotic normality is established for the saddlepoint-based estimator using M-estimation arguments. Simulations shed light on the quality of the finite-sample-based estimators, and the methodology is illustrated on a real data set. One surprising result to emerge is that, in spite of its asymptotic optimality, the MLE does not always dominate the remaining estimators in terms of basic accuracy measures such as absolute relative error. This finding may have important implications for practitioners seeking to make accurate CoVaR inferences.

Suggested Citation

Handle: RePEc:rsk:journ4:7955082
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2022-11/jor_trindade_web_final.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ4:7955082. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-risk .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.