IDEAS home Printed from https://ideas.repec.org/a/rsk/journ4/7953736.html
   My bibliography  Save this article

A two-component realized exponential generalized autoregressive conditional heteroscedasticity model

Author

Listed:
  • Xinyu Wu
  • Michelle Xia
  • Huanming Zhang

Abstract

This paper proposes a two-component realized exponential generalized autoregressive conditional heteroscedasticity (EGARCH) model – an extension of the realized EGARCH model – for the joint modeling of asset returns and realized measures of volatility. The proposed model assumes that the volatility of asset returns consists of two components: a long-run component and a short-run component. The model’s unique ability to capture the long-memory property of volatility distinguishes it from the standard realized EGARCH model. The model is convenient to implement within the framework of maximum likelihood estimation. We apply the two-component realized EGARCH model and a restricted version of the model (the two-component realized EGARCH model with only short-run leverage) to four stock indexes: the Standard & Poor’s 500 index, the Hang Seng index, the Nikkei 225 index and the Deutscher Aktienindex. The empirical study suggests that the two-component realized EGARCH model and its restricted version outperform the realized GARCH model, the realized EGARCH model and the realized heterogeneous autoregressive GARCH model in terms of in-sample fit. Further, an out-of-sample predictive analysis demonstrates that the two-component realized EGARCH model and its restricted version yield more accurate volatility forecasts than the alternatives.

Suggested Citation

Handle: RePEc:rsk:journ4:7953736
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2022-09/jor_wu_web.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ4:7953736. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-risk .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.