IDEAS home Printed from https://ideas.repec.org/a/rsk/journ4/7721041.html
   My bibliography  Save this article

Modeling loss given default regressions

Author

Listed:
  • Phillip Li
  • Xiaofei Zhang
  • Xinlei Zhao

Abstract

We investigate the puzzle in the literature that various parametric loss given default (LGD) statistical models perform similarly, by comparing their performance in a simulation framework. We find that, even using the full set of explanatory variables from the assumed data-generating process where noise is minimized, these models still show a similarly poor performance in terms of predictive accuracy and rank-ordering when mean predictions and squared error loss functions are used. However, the sophisticated parametric modes that are specifically designed to address the bimodal distributions of LGD outperform the less sophisticated models by a large margin in terms of predicted distributions. Our results also suggest that stress testing may pose a challenge to all LGD models due to a lack of loss data and the limited availability of relevant explanatory variables, and that model selection criteria based on goodness-of-fit may not serve the stress testing purpose well.

Suggested Citation

Handle: RePEc:rsk:journ4:7721041
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2020-12/Modeling_loss_given_default_regressions.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ4:7721041. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-risk .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.