IDEAS home Printed from https://ideas.repec.org/a/rsk/journ4/6922266.html
   My bibliography  Save this article

Nonparametric versus parametric expected shortfall

Author

Listed:
  • R. Douglas Martin
  • Shengyu Zhang

Abstract

We use influence functions as a basic tool to study unconditional nonparametric and parametric expected shortfall (ES) estimators with regard to returns data influence, standard errors and coherence. Nonparametric ES estimators have a monotonically decreasing influence function of returns. ES maximum likelihood estimator (MLE) influence functions are nonmonotonic and approximately symmetric, resulting in large positive returns contributing to risk. However, ES MLEs have the lowest possible asymptotic variance among consistent ES estimators. Influence functions are used to derive large sample standard error formulas for both types of ES estimator for normal and t -distributions as well as to evaluate nonparametric ES estimator inefficiency. Monte Carlo results determine finite sample sizes for which the standard errors of both types of ES estimators are sufficiently accurate to be used in practice. The nonmonotonicity of ES MLEs leads us to study a modification of normal distribution MLEs in which standard deviation is replaced by semi-standard deviation (SSD). Influence function theory is used to establish a condition under which an SSD-based ES risk estimator has monotonic influence functions and the underlying risk measures are coherent. It is also shown that the SSD-based estimator’s asymptotic standard error is only slightly larger than that of the standard deviation-based estimator.

Suggested Citation

Handle: RePEc:rsk:journ4:6922266
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2019-08/Nonparametric_versus_parametric_ES.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ4:6922266. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-risk .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.