IDEAS home Printed from https://ideas.repec.org/a/rsk/journ4/2328135.html
   My bibliography  Save this article

A gradual nonconvexification method for minimizing value-at-risk

Author

Listed:
  • Jiong Xi, Thomas F. Coleman, Yuying Li and Aditya Tayal

Abstract

Given a finite set of m scenarios, computing a portfolio with the minimum value-at-risk (VaR) is computationally difficult: the portfolio VaR function is nonconvex, nonsmooth and has many local minimums. Instead of formulating an n-asset optimal VaR portfolio problem as minimizing a loss quantile function to determine the asset holding vector Rn, we consider it as a minimization problem in an augmented space Rn, with a linear objective function under a probability constraint. We then propose a new gradual nonconvexification penalty method, aiming to reach a global minimum of nonconvex minimization under the probability constraint. A continuously differentiable piecewise quadratic function is used to approximate step functions, the sum of which defines the probabilistic constraint. In an attempt to reach the global minimizer, we solve a sequence of minimization problems indexed by a parameter pk > 0, where -pk is the minimum curvature for the probability constraint approximation. As the indexing parameter increases, the approximation function for the probabilistic inequality constraint becomes more nonconvex. Furthermore, the solution of the kth optimization problem is used as the starting point of the (k+1)th problem. Our new method has three advantages. First, it is structurally simple. Second, it is efficient, since each function evaluation requires O(m) arithmetic operations. Third, a gradual nonconvexification process is designed to track the global minimum. Both historical and synthetic data are used to illustrate the efficacy of the proposed VaR minimization method. We compare our method with the quantile-based smoothed VaR method of Gaivoronski and Pflug in terms of VaR, CPU time and efficient frontiers. We show that our gradual nonconvexification penalty method yields a better minimal VaR portfolio. We show that the proposed method is computationally much more efficient, especially when the number of scenarios is large. Please click here to download PDF ;

Suggested Citation

Handle: RePEc:rsk:journ4:2328135
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/7506/jor_coleman_web.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ4:2328135. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-risk .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.