IDEAS home Printed from https://ideas.repec.org/a/rsk/journ4/2223785.html
   My bibliography  Save this article

The Sharpe ratio efficient frontier

Author

Listed:
  • David H. Bailey and Marcos López de Prado

Abstract

ABSTRACT We evaluate the probability that an estimated Sharpe ratio will exceed a given threshold in the presence of nonnormal returns. We show that this new uncertainty-adjusted investment skill metric (called the probabilistic Sharpe ratio) has a number of important applications. First, it allows us to establish the track-record length needed for rejecting the hypothesis that a measured Sharpe ratio is below a certain threshold with a given confidence level. Second, it models the trade-off between track-record length and undesirable statistical features (eg, negative skewness with positive excess kurtosis). Third, it explains why track records with those undesirable traits would benefit from reporting performance with the highest sampling frequency such that the independent and identically distributed assumption is not violated. Fourth, it permits the computation of what we call the Sharpe ratio efficient frontier, which lets us optimize a portfolio under nonnormal, leveraged returns while incorporating the uncertainty derived from track-record length. Results can be validated using the Python code in the appendixes.

Suggested Citation

Handle: RePEc:rsk:journ4:2223785
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/6040/jor_lopez_de_prado_web.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ4:2223785. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-risk .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.