IDEAS home Printed from https://ideas.repec.org/a/rsk/journ4/2161059.html
   My bibliography  Save this article

Risk estimation using the multivariate normal inverse Gaussian distribution

Author

Listed:
  • Kjersti Aas, Ingrid Hobæk Haff and Xeni K. Dimakos

Abstract

ABSTRACT Appropriate modeling of time-varying dependencies is very important for quantifying financial risk, such as the risk associated with a portfolio of financial assets. Most of the papers analyzing financial returns have focused on the univariate case. The few that are concerned with their multivariate extensions are mainly based on the multivariate normal assumption. The idea of this paper is to use the multivariate normal inverse Gaussian (MNIG) distribution as the conditional distribution for a multivariate GARCH model. The MNIG distribution belongs to a very flexible family of distributions that captures heavy tails and skewness in the distribution of individual stock returns, as well as the asymmetry in the dependence between stocks observed in financial time series data. The usefulness of the MNIG GARCH model is highlighted through a value-at-risk (VAR) application on a portfolio of European, American and Japanese equities. Backtesting shows that for a one-day holding period this model outperforms a Gaussian GARCH model and a Student’s t GARCH model. Moreover, it is slightly better than a skew Student’s t GARCH model.

Suggested Citation

Handle: RePEc:rsk:journ4:2161059
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/4852/jor_v8n2a3.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ4:2161059. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-risk .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.