IDEAS home Printed from https://ideas.repec.org/a/rsk/journ3/5277466.html
   My bibliography  Save this article

On a family of weighted Cramér–von Mises goodness-of-fit tests in operational risk modeling

Author

Listed:
  • Kirill Mayorov
  • James Hristoskov
  • Narayanaswamy Balakrishnan

Abstract

The measurement of operational risk via the loss distribution approach (LDA) for bank capitalization purposes offers significant modeling challenges. Under the LDA, the severity of losses characterizing the monetary impact of potential operational risk events is modeled via a severity distribution. The selection of best-fit severity distributions that properly capture tail behavior is essential for accurate modeling. In this paper, we analyze the limiting properties of a family of weighted Cramér–von Mises (WCvM) goodness-of-fit test statistics, with weight function ψ⠢(t)=1/(1-t)β, which are suitable for more accurately selecting severity distributions. Specifically, we apply classical theory to determine if limiting distributions exist for these WCvM test statistics under a simple null hypothesis. We show that limiting distributions do not exist for β≥2. For β=2, we provide a normalization that leads to a nondegenerate limiting distribution. Where limiting distributions originally exist for β<2 or are obtained through normalization, we show that, for 1.5≤β≤2, the tests’ practical utility may be limited due to a very slow convergence of the finite-sample distribution to the asymptotic regime. Our results suggest that the tests provide greater utility when β<1.5, and that utility is questionable for β≥1.5, as only Monte Carlo schemes are practical in this case, even for very large samples.

Suggested Citation

Handle: RePEc:rsk:journ3:5277466
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2017-06/On_a_family_of_weighted_Cramer_von_Mises_tests.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ3:5277466. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-operational-risk .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.