IDEAS home Printed from https://ideas.repec.org/a/rsk/journ3/2317749.html
   My bibliography  Save this article

Closed-form approximations for operational value-at-risk

Author

Listed:
  • Lorenzo Hernández, Jorge Tejero, Alberto Suárez and Santiago Carrillo-Menéndez

Abstract

ABSTRACT In the loss distribution approach, operational risk is modeled in terms of the distribution of sums of independent random losses. The frequency count in the period of aggregation and the severities of the individual loss events are assumed to be independent of each other. Operational value-at-risk is then computed as a high percentile of the aggregate loss distribution. In this work we present a sequence of closed-form approximations to this measure of operational risk. These approximations are obtained by the truncation of a perturbative expansion of the percentile of the aggregate loss distribution at different orders. This expansion is valid when the aggregate loss is dominated by the maximum individual loss. This is the case in practice, because the loss severities are typically very heavy-tailed and can be modeled with subexponential distributions, such as the lognormal or the generalized Pareto distribution. The two lowest-order terms in the perturbative series are similar to the single-loss approximation and to the correction by the mean, respectively. Including higher-order terms leads to significant improvements in the quality of the approximation. Besides their accuracy and low computational cost, these closed-form expressions do not require that the moments of the severity distribution, including the mean, be finite.

Suggested Citation

Handle: RePEc:rsk:journ3:2317749
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/7370/jop_hernandez_web.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ3:2317749. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-operational-risk .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.