IDEAS home Printed from https://ideas.repec.org/a/rsk/journ1/2275476.html
   My bibliography  Save this article

A clusterized copula-based probability distribution of a counting variable for high-dimensional problems

Author

Listed:
  • Enrico Bernardi and Silvia Romagnoli

Abstract

ABSTRACT We propose a novel approach for the computation of the probability distribution of a counting variable linked to a particular kind of hierarchical multivariate copula function called a clusterized homogeneous copula. Here, the problem considered is very complex in a high-dimensional setting. As is common practice for large-dimensional problems, we restrict ourselves to positive orthant dependence and we define that copula on clusterized data, allowing us to reduce the dimension of the problem. This approach approximates a multivariate distribution function of heterogenous variables with a distribution of a fixed number of homogeneous clusters, organized through a clustering method as proposed in a 2011 paper by the authors. To compute the probability density function of the counting variable linked to a clusterized homogeneous copula, we propose an algorithm, implemented in Matlab code. We compare this probability density function with that computed through the Panjer recursion approach and the limiting Gaussian and Archimedean approaches, which are commonly used for high-dimensional problems. The scalability of the algorithm is also studied. As an application, we study the problem of evaluating the distribution of losses related to the default of various types of counterparty in a credit risk exposed portfolio.

Suggested Citation

Handle: RePEc:rsk:journ1:2275476
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/6751/jcr_romagnoli_web.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ1:2275476. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-credit-risk .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.