IDEAS home Printed from https://ideas.repec.org/a/rsk/journ1/2160673.html
   My bibliography  Save this article

Pricing synthetic CDO tranches in a model with default contagion the matrix analytic approach

Author

Listed:
  • Alexander Herbertsson

Abstract

ABSTRACT We value synthetic collateralized debt obligation (CDO) tranche spreads, index credit default swap (CDS) spreads, kth-to-default swap spreads and tranchelets in an intensity-based credit risk model with default contagion. The default dependence is modeled by letting individual intensities jump when other defaults occur. The model is reinterpreted as a Markov jump process. This allows us to use a matrix analytic approach to derive computationally tractable closed-form expressions for the credit derivatives that we want to study. Special attention is given to homogeneous portfolios. For a fixed maturity of five years, such a portfolio is calibrated against CDO tranche spreads, index CDS spreads and the average CDS spread, all taken from the iTraxx Europe series. After the calibration, which renders perfect fits, we compute spreads for tranchelets and kth-todefault swap spreads for different subportfolios of the main portfolio. Studies of the implied tranche losses and the implied loss distribution in the calibrated portfolios are also performed.We implement two different numerical methods for determining the distribution of the Markov process. Both methods are applied in separate calibrations in order to verify that the matrix analytic method is independent of the numerical approach used to find the law of the process. Monte Carlo simulations are also performed to check the correctness of the numerical implementations.

Suggested Citation

Handle: RePEc:rsk:journ1:2160673
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/digital_assets/4554/v4n4a1.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ1:2160673. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-credit-risk .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.