IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/7957920.html
   My bibliography  Save this article

Refined analysis of the no-butterfly-arbitrage domain for SSVI slices

Author

Listed:
  • Claude Martini
  • Arianna Mingone

Abstract

The no-butterfly-arbitrage domain of the Gatheral stochastic-volatility-inspired (SVI) five-parameter formula for the volatility smile has recently been described. It requires in general a numerical minimization of two functions together with a few root-finding procedures. We study here the case of the famous surface SVI (SSVI) model with three parameters, to which we apply the SVI results in order to provide the nobutterfly- arbitrage domain. As side results, we prove that, under simple requirements on parameters, SSVI slices always satisfy Fukasawa’s weak conditions of no arbitrage (ie, the corresponding Black–Scholes functions d1 and d2 are always decreasing), and we find a simple subdomain of no arbitrage for the SSVI model that we compare with the well-known subdomain of Gatheral and Jacquier. We simplify the obtained no-arbitrage domain into a parameterization that requires only one immediate numerical procedure, leading to an easy-to-implement calibration algorithm. Finally, we show that the long-term Heston SVI model is in fact an SSVI model, and we characterize the horizon beyond which it is arbitrage free.

Suggested Citation

Handle: RePEc:rsk:journ0:7957920
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2023-10/jcf_mingone_web_final.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:7957920. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.