IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/7957030.html
   My bibliography  Save this article

Sharp L¹-approximation of the log-Heston stochastic differential equation by Euler-type methods

Author

Listed:
  • Annalena Mickel
  • Andreas Neuenkirch

Abstract

We study the L1-approximation of the log-Heston stochastic differential equation at equidistant time points by Euler-type methods. We establish the convergence order 1/2 – ∊ for ∊ > 0 arbitrarily small if the Feller index v of the underlying Cox– Ingersoll–Ross process satisfies v > 1. Thus, we recover the standard convergence order of the Euler scheme for stochastic differential equations with globally Lipschitz coefficients. Moreover, we discuss the v ≥ 1 case and illustrate our findings with several numerical examples.

Suggested Citation

Handle: RePEc:rsk:journ0:7957030
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2023-07/jcf_Neuenkirch_web_final.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:7957030. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.