IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/7954785.html
   My bibliography  Save this article

Simulating the Cox–Ingersoll–Ross and Heston processes: matching the first four moments

Author

Listed:
  • Ostap Okhrin
  • Michael Rockinger
  • Manuel Schmid

Abstract

We implement 15 simulation schemes for the Cox–Ingersoll–Ross (CIR) square root process and 10 schemes for Heston’s stochastic volatility model to generate draws that we investigate for the quality of their mean, variance, skewness and kurtosis estimates. Simulations of continuous-time processes require discretization, and we therefore investigate the quality of currently known simulation techniques from both an accuracy perspective and a timing perspective. We show that no method fits all situations, and we advise the use of different simulation techniques. We also provide an extension to Andersen’s quadratic exponential method to generate returns with skewness or kurtosis closer to their theoretical values in certain settings. A simulation experiment focusing on the estimation of return skewness and kurtosis demonstrates the relevance of using the correct simulation technique and reveals the limitations on the convergence of those estimates to the true moments when volatility is generated by a CIR process for which the Feller condition is not satisfied and the sample is not of relatively large size.

Suggested Citation

Handle: RePEc:rsk:journ0:7954785
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2022-10/jcf_rockinger_online_early.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:7954785. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.