IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/7938986.html
   My bibliography  Save this article

Pricing barrier options with deep backward stochastic differential equation methods

Author

Listed:
  • Narayan Ganesan
  • Yajie Yu
  • Bernhard Hientzsch

Abstract

This paper presents a novel and direct approach to solving boundary- and final-value problems, corresponding to barrier options, using forward pathwise deep learning and forward–backward stochastic differential equations (FBSDEs). Barrier instruments are instruments that expire or transform into another instrument if a barrier condition is satisfied before maturity; otherwise they perform like the instrument without the barrier condition. In a partial differential equation, this corresponds to adding boundary conditions to the final-value problem. The deep backward stochastic differential equation (deep BSDE) methods developed so far have not addressed barrier/boundary conditions directly. We extend the pathwise deep BSDE methods to the barrier condition case by adding nodes to the computational graph, in order to explicitly monitor the barrier conditions for each realization of the dynamics, as well as adding nodes that preserve the time, state variables and trading strategy value at the barrier breach, or at maturity otherwise. Given these additional nodes in the computational graph, the forward loss function quantifies the replication of the barrier or final payoff according to a chosen risk measure such as the squared sum of differences. The proposed method can handle any barrier condition in the FBSDE setup and any Dirichlet boundary conditions in the partial differential equation setup, in both low and high dimensions.

Suggested Citation

Handle: RePEc:rsk:journ0:7938986
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2022-03/Pricing_barrier_options_with_deep_BSDE_methods_final.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:7938986. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.