IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/7932281.html
   My bibliography  Save this article

Robust product Markovian quantization

Author

Listed:
  • Ralph Rudd
  • Thomas A. McWalter
  • Jörg Kienitz
  • Eckhard Platen

Abstract

Recursive marginal quantization (RMQ) allows the construction of optimal discrete grids for approximating solutions to stochastic differential equations in d dimensions. Product Markovian quantization (PMQ) reduces this problem to d one-dimensional quantization problems by recursively constructing product quantizers, as opposed to a truly optimal quantizer. However, the standard Newton–Raphson method used in the PMQ algorithm suffers from numerical instabilities, inhibiting widespread adoption, especially for use in calibration. By directly specifying the random variable to be quantized at each time step, we show that PMQ, and RMQ in one dimension, can be expressed as standard vector quantization. This reformulation allows the application of the accelerated Lloyd algorithm in an adaptive and robust procedure. Further, in the case of stochastic volatility models, we extend the PMQ algorithm by using higher-order updates for the volatility or variance process. We illustrate the technique for European options using the Heston model, and more exotic products using the stochastic alpha–beta–rho (SABR) model.

Suggested Citation

Handle: RePEc:rsk:journ0:7932281
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2022-03/Robust_product_Markovian_quantization_final.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:7932281. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.