IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/7900456.html
   My bibliography  Save this article

A review of tree-based approaches to solving forward–backward stochastic differential equations

Author

Listed:
  • Long Teng

Abstract

In this work, we study ways of solving (decoupled) forward–backward stochastic differential equations numerically using regression trees. Based on general theta-discretization for time integrands, we show how to efficiently use regression-tree-based methods to solve the resulting conditional expectations. Several numerical experiments, including high-dimensional problems, are provided to demonstrate accuracy and performance. To show the applicability of forward–backward stochastic differential equations to financial problems, we apply our tree-based approach to the Heston stochastic volatility model to high-dimensional nonlinear pricing problems.

Suggested Citation

Handle: RePEc:rsk:journ0:7900456
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2022-01/Tree-based_approaches_solving_FBSDEs_final.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:7900456. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.