IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/7656071.html
   My bibliography  Save this article

Gaussian process regression for derivative portfolio modeling and application to credit valuation adjustment computations

Author

Listed:
  • Stéphane Crépey
  • Matthew F. Dixon

Abstract

Modeling counterparty risk is computationally challenging because it requires the simultaneous evaluation of all trades between each counterparty under both market and credit risk. We present a multi-Gaussian process regression approach, which is well suited for the over-the-counter derivative portfolio valuation involved in credit valuation adjustment (CVA) computation. Our approach avoids nested simulation or simulation and regression of cashflows by learning a Gaussian metamodel for the mark-to-market cube of a derivative portfolio. We model the joint posterior of the derivatives as a Gaussian process over function space, imposing the spatial covariancestructure on the risk factors. Monte Carlo simulation is then used to simulate the dynamics of the risk factors. The uncertainty in portfolio valuation arising from the Gaussian process approximation is quantified numerically. Numerical experiments demonstrate the accuracy and convergence properties of our approach for CVA computations, including a counterparty portfolio of interest rate swaps.

Suggested Citation

Handle: RePEc:rsk:journ0:7656071
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2020-08/Gaussian_process_regression_for_derivative_portfolio_modeling_final.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:7656071. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.