IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/6569771.html
   My bibliography  Save this article

Efficient conservative second-order central-upwind schemes for option-pricing problems

Author

Listed:
  • Omishwary Bhatoo
  • Arshad Ahmud Iqbal Peer
  • Eitan Tadmor
  • Désiré Yannick Tangman
  • Aslam Aly El Faidal Saib

Abstract

The conservative Kurganov–Tadmor (KT) scheme has been successfully applied to option-pricing problems by Germán I. Ramírez-Espinoza and Matthias Ehrhardt. These included the valuation ;of European, Asian and nonlinear ;options as Black–Scholes partial differential ;equations, written in the conservative form, by simply updating fluxes in the black box approach. In this paper, we describe an improvement of this idea through a fully vectorized algorithm of nonoscillatory slope limiters and the efficient use of time solvers. We also propose the application of second-order extensions of KT to option-pricing problems. Our test problems solve one-dimensional benchmark and convection-dominated ;European options ;as well as digital and butterfly options. ;These demonstrate the robustness and flexibility of the pricing methods and set a basis for complex problems. Further, the computation of option Greeks ensures the reliability of these methods. Numerical experiments are performed on barrier options, early exercisable American options and two-dimensional fixed and floating strike Asian options. To the authors’ knowledge, this is the first time American options have been priced by applying the early exercise condition on the semi-discrete formulation of central-upwind schemes. Our results show second-order, nonoscillatory and high-resolution properties of the schemes as well as computational efficiency.

Suggested Citation

Handle: RePEc:rsk:journ0:6569771
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2019-04/Efficient_second_order_central_upwind_schemes_for_option_pricing.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:6569771. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.