IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/6485736.html
   My bibliography  Save this article

Ensemble models in forecasting financial markets

Author

Listed:
  • Andreas Karathanasopoulos
  • Mitra Sovan
  • Chia Chun Lo
  • Adam Zaremba
  • Mohammed Osman

Abstract

In this paper, we study an evolutionary framework for the optimization of various types of neural network structures and parameters. Three different evolutionary algorithms – the genetic algorithm (GA), differential evolution (DE) and the particle swarm optimizer (PSO) – are developed to optimize the structure and the parameters of three different types of neural network: multilayer perceptrons (MLPs), recurrent neural networks (RNNs) and radial basis function (RBF) neural networks. The motivation of this project is to present novel methodologies for the task of forecasting and trading financial indexes. More specifically, the trading and statistical performance of all models is investigated in a forecast simulation of the SPY and the QQQ exchange-traded funds (ETFs) time series over the period January 2006 to December 2015, using the last three years as out-of-sample testing. As it turns out, the RBF-PSO, RBF-DE and RBF-GA ensemble methodologies do remarkably well and outperform all of the other models.

Suggested Citation

Handle: RePEc:rsk:journ0:6485736
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2019-12/Ensemble_models_in_forecasting_financial_markets_final.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:6485736. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.