IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/6226906.html
   My bibliography  Save this article

American and exotic option pricing with jump diffusions and other Lévy processes

Author

Listed:
  • J. Lars Kirkby

Abstract

In general, no analytical formulas exist for pricing discretely monitored exotic options, even when a geometric Brownian motion governs the risk-neutral underlying. While specialized numerical algorithms exist for pricing particular contracts, few can be applied universally with consistent success and with general Lévy dynamics. This paper develops a general methodology for pricing early exercise and exotic financial options by extending the recently developed PROJ method. We are able to efficiently obtain accurate values for complex products including Bermudan/ American options, Bermudan barrier options, survival probabilities and credit default swaps by value recursion; European barrier and lookback/hindsight options by density recursion; and arithmetic Asian options by characteristic function recursion. This paper presents a unified approach to tackling these and related problems. Algorithms are provided for each option type, along with a demonstration of convergence. We also provide a large set of reference prices for exotic, American and European options under Black–Scholes–Merton, normal inverse Gaussian, Kou’s double exponential jump diffusion, Carr–Madan–Geman–Yor (also known as KoBoL) and Merton’s jump-diffusion models.

Suggested Citation

Handle: RePEc:rsk:journ0:6226906
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2018-12/American_and_exotic_option_pricing.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:6226906. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.