IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/5529741.html
   My bibliography  Save this article

Hybrid finite-difference/pseudospectral methods for the Heston and Heston–Hull–White partial differential equations

Author

Listed:
  • Christian Hendricks
  • Matthias Ehrhardt
  • Michael Günther

Abstract

We propose a hybrid spatial finite-difference/pseudospectral discretization for European option-pricing problems under the Heston and Heston–Hull–White models. In the direction of the underlying asset, where the payoff profile is nonsmooth, we use a standard central second-order finite-difference scheme, whereas we use a Chebyshev collocation method in the other spatial dimensions. In the time domain, we employ alternating direction implicit schemes to efficiently decompose the system matrix into simpler one-dimensional problems. This approach allows us to compute numerical solutions, which are second-order accurate in time and exhibit spectral accuracy in the spatial domains except for the asset direction. The numerical experiments reveal that the proposed scheme outperforms the standard second-order finite-difference scheme in terms of accuracy versus runtime and shows an unconditionally stable behavior.

Suggested Citation

Handle: RePEc:rsk:journ0:5529741
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2018-04/Methods_for_the_Heston_and_Heston_Hull_White_PDEs.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:5529741. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.