IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/5363811.html
   My bibliography  Save this article

Cumulative prospect theory and mean–variance analysis: a rigorous comparison

Author

Listed:
  • Thorsten Hens
  • János Mayer

Abstract

We propose a numerical optimization approach that can be used to solve portfolio selection problems including several assets and involving objective functions from cumulative prospect theory (CPT). Implementing the suggested algorithm, we compare asset allocations that are derived for CPT based on two different methods: maximizing CPT along the mean–variance efficient frontier so that simple mean–variance algorithms can be used, and maximizing CPT without this restriction. According to the theoretical literature, with normally distributed returns and unlimited short sales, these two approaches lead to the same optimal solutions. We find that for empirical finite discrete distributions obtained via sampling and subsequent clustering from a normal distribution, the difference between the two approaches remains negligible even if short sales are restricted. However, if standard asset allocation data for pension funds is considered, the difference is considerable. Moreover, for certain types of derivatives, such as call options, the restriction of asset allocations to the mean–variance efficient frontier produces sizable losses in various respects, including decreases in expected returns and expected utility. We are able to explain these differences by CPT’s preference for positive skewness, which is not accounted for by optimizing CPT along the mean–variance efficient frontier. ;

Suggested Citation

Handle: RePEc:rsk:journ0:5363811
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2017-11/Cumulative_prospect_theory_and_mean%E2%80%93variance_analysis.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:5363811. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.