IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/5316546.html
   My bibliography  Save this article

A generalized risk budgeting approach to portfolio construction

Author

Listed:
  • Martin Haugh
  • Garud Iyengar
  • Irene Song

Abstract

Risk-based asset allocation models have received considerable attention in recent years. This increased popularity is due in part to the difficulty in estimating expected returns, as well as to the 2008 financial crisis, which helped reinforce the key role of risk in asset allocation. We propose a generalized risk budgeting (GRB) approach to portfolio construction. In a GRB portfolio, assets are grouped into possibly overlapping subsets, and each subset is allocated a prespecified risk budget. Minimum variance, risk parity and risk budgeting portfolios are all special instances of a GRB portfolio. The GRB portfolio optimization problem is to find a GRB portfolio with an optimal risk–return profile, where risk is measured using any positively homogeneous risk measure. When the subsets form a partition, the assets all have the same expected return, and we restrict ourselves to long-only portfolios; then, the GRB problem can in fact be solved as a convex optimization problem. In general, however, the GRB problem is a constrained nonconvex problem, for which we propose two solution approaches. The first approach uses a semidefinite programming relaxation to obtain an (upper) bound on the optimal objective function value. In the second approach, we develop a numerical algorithm that integrates augmented Lagrangian and Markov chain Monte Carlo methods in order to find a point in the vicinity of a very good local optimum. This point is then supplied to a standard nonlinear optimization routine with the goal of finding this local optimum. The merit of this second approach is in its generic nature: in particular, it provides a strategy for choosing a starting point for any nonlinear optimization algorithm.

Suggested Citation

Handle: RePEc:rsk:journ0:5316546
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2017-08/A_generalized_risk_budgeting_approach.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:5316546. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.