IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/3946026.html
   My bibliography  Save this article

Investment opportunities forecasting: a genetic programming-based dynamic portfolio trading system under a directional-change framework

Author

Listed:
  • Monira Essa Aloud

Abstract

This paper presents an autonomous effective trading system devoted to the support of decision-making processes in the financial market domain. Genetic programming (GP) has been used effectively as an artificial intelligence technique in the financial field, especially for forecasting tasks in financial markets. In this paper, GP is employed as a means of automatically generating short-term trading rules on financial markets using technical indicators and fundamental parameters. The majority of forecasting tools use a fixed physical timescale, which makes the flow of price fluctuations discontinuous. Therefore, using a fixed physical timescale may expose investors to risks, due to their ignorance of some significant activities. Instead of using fixed timescales for this purpose, the trading rules are generated under a directional change (DC) event framework.We examine the profitability of the trading systems for the Saudi Stock Exchange, and evaluate the GP forecasting performance under a DC framework through agent-based simulation market index trading. The performance of the forecasting model is compared with a number of benchmark forecasts, namely the buy-and-hold and technical analysis trading strategies. Our numerical results show that the proposed GP model under a DC framework significantly outperforms other traditional models based on fixed physical timescales in terms of portfolio return.

Suggested Citation

Handle: RePEc:rsk:journ0:3946026
as

Download full text from publisher

File URL: https://www.risk.net/system/files/digital_asset/2018-06/Investment_opportunities_forecasting.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:3946026. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.