IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2472041.html
   My bibliography  Save this article

Valuation of barrier options using sequential Monte Carlo

Author

Listed:
  • Pavel V Shevchenko
  • Pierre Del Moral

Abstract

ABSTRACT Sequential Monte Carlo (SMC) methods have been used successfully in many applications in engineering, statistics and physics. However, they are seldom used in financial option pricing literature and its practice. We present an SMC method for pricing barrier options with continuous and discrete monitoring of the barrier condition. With our method, simulated asset values rejected due to the barrier condition are resampled from asset samples that do not breach the barrier condition, improving the efficiency of the option price estimator, while with the standard Monte Carlo method many simulated asset paths can be rejected by the barrier condition, making it harder to estimate the option price accurately. We compare the SMC with the standard Monte Carlo method and demonstrate that there is little extra effort required to implement the former compared with the latter, while the improvement in price estimation can be significant. Both methods result in unbiased estimators for the price converging to the true value as 1 / √M , where M is the number of simulations (asset paths). However,;the variance of the SMC estimator is smaller and does not grow with the number of time steps, unlike standard Monte Carlo. In this paper, we demonstrate that the SMC can successfully be used for pricing barrier options. SMC methods can also be used for pricing other exotic options and for cases with many underlying assets and additional stochastic factors, such as stochastic volatility; we provide general formulas and references.

Suggested Citation

Handle: RePEc:rsk:journ0:2472041
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/10851/Valuation_of_barrier_options_using_sequential_Monte_Carlo.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2472041. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.