IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2447117.html
   My bibliography  Save this article

Wiener chaos expansion and numerical solutions of the Heath–Jarrow–Morton interest rate model

Author

Listed:
  • Nikolaos Thomaidis
  • Evangelia A. Kalpinelli
  • Athanasios N. Yannacopoulos

Abstract

ABSTRACT In this paper, we propose and analyze a simple and fast numerical method for the solution of the stochastic Heath-Jarrow-Morton (HJM) interest rate model under the Musiela parameterization, based on theWiener chaos expansion (WCE). Through the proposed method, the infinite-dimensional HJM equation is approximated by a finite system of partial differential equations (PDEs), which can be addressed by standard techniques. To illustrate the general construction, we approximate the value of the US treasury bond in an HJM framework, and the results are compared with those derived by the Monte Carlo method and the ensemble Kalman filter. The proposed method is computationally efficient compared with the standard techniques, and it provides a convenient way to compute the statistical moments of the solution numerically. Numerical results and useful formulas for estimating the stochastic duration and immunization are presented.

Suggested Citation

Handle: RePEc:rsk:journ0:2447117
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/9546/Wiener_chaos_expansion_and_numerical_solutions_of_the_HJM_interest_rate_model.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2447117. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.