IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2442247.html
   My bibliography  Save this article

Efficient solution of backward jump-diffusion partial integro-differential equations with splitting and matrix exponentials

Author

Listed:
  • Andrey Itkin

Abstract

ABSTRACT We propose a new, unified approach to solving jump-diffusion partial integrodifferential equations (PIDEs), which often appear in mathematical finance. Our method consists of the following steps. First, a second-order operator splitting on financial processes (diffusion and jumps) is applied to these PIDEs. To solve the diffusion equation, we use standard finite-difference methods, which for multidimensional problems could also include splitting on various dimensions. For the jump part, we transform the jump integral into a pseudo-differential operator. Then, for various jump models, we show how to construct an appropriate first- and secondorder approximation on a grid that supersets the grid we used for the diffusion part. These approximations make the scheme unconditionally stable in time and preserve the positivity of the solution, which is computed either via a matrix exponential or via a Padé approximation of the matrix exponent.Various numerical experiments are provided to justify these results.

Suggested Citation

Handle: RePEc:rsk:journ0:2442247
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/9489/Efficient_solution_of_backward_jump_diffusion_PIDEs.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2442247. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.