IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2440737.html
   My bibliography  Save this article

B-spline techniques for volatility modeling

Author

Listed:
  • Sylvain Corlay

Abstract

ABSTRACT This paper is devoted to the application of B-splines to volatility modeling, specifically the calibration of the leverage function in stochastic local volatility (SLV) models and the parameterization of an arbitrage-free implied volatility surface calibrated to sparse option data. We use an extension of classical B-splines obtained by including basis functions with infinite support. We first discuss the application of shape-constrained B-splines to the estimation of conditional expectations, not merely from a scatter plot but also from the given marginal distributions. One application is the Monte Carlo calibration of SLVmodels by Markov projection. We then present a new technique for the calibration of an implied volatility surface to sparse option data. We use a B-spline parameterization of the Radon-Nikodym derivative of the underlying's risk-neutral probability density with respect to a roughly calibrated base model. We show that this method provides smooth arbitrage-free implied volatility surfaces. Finally, we sketch a Galerkin method with B-spline finite elements to the solution of the partial differential equation satisfied by the Radon-Nikodym derivative.

Suggested Citation

Handle: RePEc:rsk:journ0:2440737
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/9466/B_spline_techniques_for_volatility_modeling.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2440737. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.