IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2439194.html
   My bibliography  Save this article

The efficient application of automatic differentiation for computing gradients in financial applications

Author

Listed:
  • Wei Xu
  • Xi Chen
  • Thomas F. Coleman

Abstract

ABSTRACT Automatic differentiation (AD) is a practical field of computational mathematics that is of growing interest across many industries, including finance. The use of reverse-mode AD is particularly interesting, since it allows for the computation of gradients in the same time required to evaluate the objective function itself. However, it requires excessive memory. This memory requirement can make reverse-mode AD infeasible in some cases (depending on the function complexity and available RAM) and slower than expected in others, due to the use of secondary memory and nonlocalized memory references. However, it turns out that many complex (expensive) functions in finance exhibit a natural substitution structure. In this paper, we illustrate this structure in computational finance as it arises in calibration and inverse problems, and determine Greeks in a Monte Carlo setting. In these cases, the required memory is a small fraction of that required by reverse-mode AD, but the computing time complexity is the same. In fact, our results indicate a significant realized speedup compared with straight reverse-mode AD.

Suggested Citation

  • Wei Xu & Xi Chen & Thomas F. Coleman, . "The efficient application of automatic differentiation for computing gradients in financial applications," Journal of Computational Finance, Journal of Computational Finance.
  • Handle: RePEc:rsk:journ0:2439194
    as

    Download full text from publisher

    File URL: https://www.risk.net/journal-of-computational-finance/2439194/the-efficient-application-of-automatic-differentiation-for-computing-gradients-in-financial-applications
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2439194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.