IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2397220.html
   My bibliography  Save this article

An efficient Monte Carlo method for discrete variance contracts

Author

Listed:
  • Nicolas Merener and Leonardo Vicchi

Abstract

ABSTRACT We develop an efficient Monte Carlo method for the valuation of financial contracts on discretely realized variance.We work with a general stochastic volatility model that makes realized variance dependent on the full path of the asset price. The variance contract price is a high-dimensional integral over the fundamental sources of randomness. We identify a two-dimensional manifold that drives most of the uncertainty in realized variance, and we compute the contract price by combining precise integration over this manifold, implemented as fine stratification or deterministic sampling with quasirandom numbers, with conditional Monte Carlo on the remaining dimensions. For a subclass of models and a class of nonlinear payoffs, we derive approximate theoretical results that quantify the variance reduction achieved by our method. Numerical tests for the discretized versions of the widely used Hull-White and Heston models show that the algorithm performs significantly better than a standard Monte Carlo, even for fixed computational budgets.

Suggested Citation

Handle: RePEc:rsk:journ0:2397220
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/8629/jcf_merener_web.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2397220. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.