IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2347676.html
   My bibliography  Save this article

Adjoint algorithmic differentiation: calibration and implicit function theorem

Author

Listed:
  • Marc Henrard

Abstract

ABSTRACT Adjoint algorithmic differentiation is an efficient way to obtain financial instrument price derivatives with respect to the data inputs. Often the differentiation does not cover the full pricing process when a model calibration is performed. Thanks to the implicit function theorem, the differentiation of the solver embedded in the calibration is not required to differentiate to full pricing process. An efficient approach to the full process differentiation is described.

Suggested Citation

  • Marc Henrard, . "Adjoint algorithmic differentiation: calibration and implicit function theorem," Journal of Computational Finance, Journal of Computational Finance.
  • Handle: RePEc:rsk:journ0:2347676
    as

    Download full text from publisher

    File URL: https://www.risk.net/system/files/import/protected/digital_assets/7822/jcf_henrard_web.pdf
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2347676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.