IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2309289.html
   My bibliography  Save this article

High-order discretization schemes for stochastic volatility models

Author

Listed:
  • Benjamin Jourdain and Mohamed Sbai

Abstract

ABSTRACT In typical stochastic volatility models, the process driving the volatility of the asset price evolves according to an autonomous one- dimensional stochastic differential equation (SDE). We assume that the coefficients of this equation are smooth. Using Ito's formula, we get rid, in the asset price dynamics, of the stochastic integral with respect to the Brownian motion driving this SDE. Taking advantage of this structure, we propose first a scheme based on the Milstein discretization of this SDE, which converges with order 1 to the asset price dynamics for an appropriate notion of convergence that we call weak trajectorial convergence, and, second, a scheme based on the Ninomiya-Victoir discretization of this SDE, with order 2, of weak convergence to the asset price. We also propose a specific scheme with improved convergence properties when the volatility of the asset price is driven by an Ornstein-Uhlenbeck process.We confirm the theoretical rates of convergence by numerical experiments and show that our schemes are well adapted to the multilevel Monte Carlo method introduced by Giles in 2008.

Suggested Citation

Handle: RePEc:rsk:journ0:2309289
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/7323/jcf_sbai_web.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2309289. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.