IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2253221.html
   My bibliography  Save this article

Pricing high-dimensional Bermudan options using variance-reduced Monte Carlo methods

Author

Listed:
  • Peter Hepperger

Abstract

ABSTRACT A numerical method for pricing Bermudan options depending on a large number of underlyings is presented. The asset prices are modeled with exponential time-inhomogeneous jump-diffusion processes. We improve the least-squares Monte Carlo method proposed by Longstaff and Schwartz, introducing an efficient variance-reduction scheme. A control variable is obtained from a low-dimensional approximation of the multivariate Bermudan option. To this end, we adapt a model reduction method called proper orthogonal decomposition (POD), which is closely related to principal component analysis, to the case of Bermudan options. Our goal is to make use of the correlation structure of the assets in an optimal way. We compute the expectation of the control variable either by solving a low-dimensional partial integro-differential equation or by applying Fourier methods. The POD approximation can also be used as a candidate for the minimizing martingale in the dual pricing approach suggested by Rogers.We evaluate both approaches in numerical experiments. ;

Suggested Citation

Handle: RePEc:rsk:journ0:2253221
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/6416/jcf_hepperger_web.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2253221. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.